Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection

نویسندگان

  • Markus Schrettl
  • Elaine Bignell
  • Claudia Kragl
  • Yasmin Sabiha
  • Omar Loss
  • Martin Eisendle
  • Anja Wallner
  • Herbert N Arst
  • Ken Haynes
  • Hubertus Haas
چکیده

Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we delineate pathways of intra- and extracellular siderophore biosynthesis and show that A. fumigatus synthesizes a developmentally regulated fourth siderophore, termed hydroxyferricrocin, employed for conidial iron storage. By inactivation of the nonribosomal peptide synthetase SidC, we demonstrate that the intracellular siderophores are required for germ tube formation, asexual sporulation, resistance to oxidative stress, catalase A activity, and virulence. Restoration of the conidial hydroxyferricrocin content partially rescues the virulence of the apathogenic siderophore null mutant Delta sidA, demonstrating an important role for the conidial siderophore during initiation of infection. Abrogation of extracellular siderophore biosynthesis following inactivation of the acyl transferase SidF or the nonribosomal peptide synthetase SidD leads to complete dependence upon reductive iron assimilation for growth under iron-limiting conditions, partial sensitivity to oxidative stress, and significantly reduced virulence, despite normal germ tube formation. Our findings reveal distinct cellular and disease-related roles for intra- and extracellular siderophores during mammalian Aspergillus infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.

In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impai...

متن کامل

SreA-mediated iron regulation in Aspergillus fumigatus

Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high-affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for...

متن کامل

The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in h...

متن کامل

Molecular Insights into Pathogenesis and Infection with Aspergillus Fumigatus.

The virulence of fungi is dependent on multiple factors, including the immune status of patients and biological features of fungi. In particular, the virulence of Aspergillus fumigatus is due to the complex interaction among various molecules involved in thermotolerance (such as ribosomal biogenesis proteins, α-mannosyltransferase and heat shock proteins), pigment production (DHN-melanin), immu...

متن کامل

Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum

Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Pathogens

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007